Ultrafilter Mappings and Their Dedekind Cuts

نویسنده

  • ANDREAS BLASS
چکیده

Let D be an ultrafilter on the set N of natural numbers. To each function p: N — N and each ultrafilter E that is mapped to D by p, we associate a Dedekind cut in the ultrapower ö-prod N. We characterize, in terms of rather simple closure conditions, the cuts obtainable in this manner when various restrictions are imposed on E and p. These results imply existence theorems, some known and some new, for various special kinds of ultrafilters and maps. Although some of what we say can be generalized to larger cardinals, we shall confine our attention to ultrafilters on a countable set, which we may take to be the set /V of natural numbers. It will be convenient to identify N xN with N by means of one of the standard pairing functions; thus, the projections, and ff2» ft°m 'V x N to N may be viewed as maps from iV to Af. If E is an ultrafilter on iV, we define an equivalence relation on the functions from /V to N by declaring two functions to be equal mod E iff their restrictions to some set in E are the same. The equivalence class [/] of a function / is called its germ (more precisely, its E-germ [/lg), and the set of all germs is the ultrapower E-prod N. All relations and operations defined on N have natural extensions making E-prod iV an elementary extension of N, provided we identify the germs of constant functions with the values of these functions (see [8]). A function p: N —» /V maps E to the ultrafilter p(E) = {A C ,V| p~ HA) e E\; p(E) depends only on E and the E-germ of p. If p maps E to D, we write p: E —* D. If, in addition, p is one-to-one on some set in E, then we call p an isomorphism from E to D and write p: E Sf D. In this case, there is a permutation of /V equal mod E to /, and there is an isomorphism g:D«E, unique mod D, such that f ° g and g °f are equal, mod D and E respectively, to the identity. It is easy to check that the composite of two isomorphisms is again an isomorphism. If we replace a map p: E —» D by another with the same germ, or if we compose p with an isomorphism E' = E, all the properties of p in which we shall be Received by the editors July 31, 1972. AMS (MOS) subject classifications (1970). Primary 04A20; Secondary 02H13, 02H20, 04A30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramsey for R1 ultrafilter mappings and their Dedekind cuts

Associated to each ultrafilter U on ω and each map p : ω → ω is a Dedekind cut in the ultrapower ωω/p(U). Blass has characterized, under CH, the cuts obtainable when U is taken to be either a p-point ultrafilter, a weakly-Ramsey ultrafilter or a Ramsey ultrafilter. Dobrinen and Todorcevic have introduced the topological Ramsey space R1. Associated to the space R1 is a notion of Ramsey ultrafilt...

متن کامل

forR1 ultrafilter mappings and their Dedekind cuts

Associated to each ultrafilter U on ω and each map p : ω → ω is a Dedekind cut in the ultrapower ω/p(U). Blass has characterized, under CH, the cuts obtainable when U is taken to be either a p-point ultrafilter, a weakly-Ramsey ultrafilter or a Ramsey ultrafilter. Dobrinen and Todorcevic have introduced the topological Ramsey spaceR1. Associated to the spaceR1 is a notion of Ramsey ultrafilter ...

متن کامل

Arithmetic of Dedekind cuts on ordered Abelian groups

We study Dedekind cuts on ordered Abelian groups. We introduce a monoid structure on them, and we characterise, via a suitable representation theorem, the universal part of the theory of such structures. MSC: 06F05; 06F20

متن کامل

Dedekind's Real Numbers

Richard Dedekind's characterization of the real numbers as the system of cuts of rational numbers is by now the standard in almost every mathematical book on analysis or number theory. In the philosophy of mathematics Dedekind is given credit for this achievement, but his more general views are discussed very rarely and only superrcially. For example, Leo Corry, who dedicates a whole chapter of...

متن کامل

Towards a formal theory of fuzzy Dedekind reals

In the framework of Henkin style higher-order fuzzy logic à LΠω we construct fuzzy real numbers as fuzzy Dedekind cuts over crisp rationals, and show some of their properties provable in à LΠω. The definitions of algebraic operations and a theory of fuzzy intervals are sketched.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010